Biology Grade 12 (SBI4U)

 HOMEPAGE > Biology Grade 12 (SBI4U)

Biology
Grade 12, University Preparation (SBI4U)

 

Course Title : Biology, Grade 12, University Preparation(SBI4U)
Course Name : Biology
Course Code : SBI4U
Grade : 12
Course Type : University Preparation
Credit Value : 1.0
Prerequisite : Biology, Grade 11 University Preparation SBI3U
Curriculum Policy Document: Science, The Ontario Curriculum, Grades 11 and 12, 2008 (Revised)
Course Developer: USCA Academy
Department: Science
Development Date: June 2019
Development Date: Most Recent Revision Date: June 2019

Course Description

This course furthers students’ understanding of the processes that occur in biological systems. Students will study theory and conduct investigations in the areas of biodiversity; evolution; genetic processes; the structure and function of animals; and the anatomy, growth, and function of plants. The course focuses on the theoretical aspects of the topics under study, and helps students refine skills related to scientific investigation.

Overall Curriculum Expectations

A1 demonstrate scientific investigation skills (related to both inquiry and research) in the four areas of skills (initiating and planning, performing and recording, analysing and interpreting, and communicating);

A2 identify and describe careers related to the fields of science under study, and describe the contributions of scientists, including Canadians, to those fields.

B1 analyse the effects of various human activities on the diversity of living things;

B2. investigate, through laboratory and/or field activities or through simulations, the principles of scientific classification, using appropriate sampling and classification techniques;

B3. demonstrate an understanding of the diversity of living organisms in terms of the principles of taxonomy and phylogeny

C1 analyse the economic and environmental advantages and disadvantages of an artificial selection technology, and evaluate the impact of environmental changes on natural selection and endangered species;

C2. investigate evolutionary processes, and analyse scientific evidence that supports the theory of evolution;

C3. demonstrate an understanding of the theory of evolution, the evidence that supports it, and some of the mechanisms by which it occurs.

D1. evaluate the importance of some recent contributions to our knowledge of genetic processes, and analyse social and ethical implications of genetic and genomic research;

D2. investigate genetic processes, including those that occur during meiosis, and analyse data to solve basic genetics problems involving monohybrid and dihybrid crosses;

D3. demonstrate an understanding of concepts, processes, and technologies related to the transmission of hereditary characteristics

E1 analyse the relationships between changing societal needs, technological advances, and our understanding of internal systems of humans;

E2. investigate, through laboratory inquiry or computer simulation, the functional responses of the respiratory and circulatory systems of animals, and the relationships between their respiratory, circulatory, and digestive systems;

E3. demonstrate an understanding of animal anatomy and physiology, and describe disorders of the respiratory, circulatory, and digestive systems.

F1 evaluate the importance of sustainable use of plants to Canadian society and other cultures;

F2. investigate the structures and functions of plant tissues, and factors affecting plant growth;

F3. demonstrate an understanding of the diversity of vascular plants, including their structures, internal transport systems, and their role in maintaining biodiversity.

Outline of Course Content

Unit Titles and Descriptions Time and Sequence
Unit 1 Evolution

In this unit, students will demonstrate an understanding of the theory of evolution and the evidence that supports it. They will examine the mechanisms by which it occurs, including thorough consideration of natural selection and punctuated equilibrium, and evaluate the logic that has drawn scientists to their conclusions. They will also analyse the economic and environmental pros and cons of artificial selection technology, and evaluate the impact of environmental changes on natural selection and species at risk.

22 hours
Unit 2 Diversity of Life

In this unit, students will demonstrate an understanding of the diversity of living things through the principles of taxonomy and phylogeny. They will use sampling and classification techniques to infer phylogenies and heredity. They will analyse the effects of human activity on biodiversity.

22 hours
Unit 3 Genetic Processes

In this unit, students will demonstrate an understanding of concepts, processes, and technologies related to the transmission of hereditary characteristics. They will investigate genetic processes, including but not limited to mitosis and meiosis, and solve basic classical genetics problems involving monohybrid and dihybrid crosses. They will consider the importance of recent contributions to our knowledge of genetics, and consider the impact and implications of genetic, genomic and proteomic research.

22 hours
Unit 4 Animals: Structure and Function

In this unit, students will demonstrate an understanding of animal anatomy and physiology, and describe disorders of some major organ systems. They will investigate by means of computer simulation and independent experimentation, the functional responses of the respiratory and circulatory systems of animals, and the relationships between major organ systems. They will analyse the relationships between changing societal needs, technological advances and our understanding of internal systems of humans, including detailed studies of some modern heart surgeries.

20 hours
Unit 5 Plants: Anatomy, Growth and Function

In this unit, students will demonstrate an understanding of the diversity of vascular plants, including but not limited to their structures, internal transport systems, reproductive cycles, roles in evolution, and roles in creating and maintaining biodiversity in the context of ecological succession and climax communities. They will investigate the structures and functions of plant tissues through laboratory exercises. They will consider the importance of the sustainable use of plants to society.

21 hours
Final Evaluation

The final assessment task is a three hour exam worth 30% of the student’s final mark.

3 hours
Total 110 hours

It is important that students have opportunities to learn in a variety of ways: individually and cooperatively;

independently and with teacher direction; through hands-on activities; and

through the study of examples followed by practice; 

all of which will be used throughout this course.

The expectations in this science course call for an active, experimental approach to learning, and require all students to participate regularly in laboratory activities. Laboratory activities can reinforce the learning of scientific concepts and promote the development of the skills of scientific investigation and communication. Where opportunity allows, students might be required, as part of their laboratory activities, to design and conduct research on a real scientific problem for which the results are unknown. Connections between science and technology and between science and the world beyond the school will be integrated into students’ learning of scientific concepts and skills. Where possible, concepts will be introduced in the context of real-world problems and issues. Students will also be provided with a variety of opportunities to broaden their understanding of scientific investigation. Many activities used in all the units are developing skills necessary for success in the final examination.

Assessment is a systematic process of collecting information or evidence about student learning. Evaluation is the judgment we make about the assessments of student learning based on established criteria. The purpose of assessment is to improve student learning. This means that judgments of student performance must be criterion-referenced so that feedback can be given that includes clearly expressed next steps for improvement. Tools of varying complexity are used by the teacher to facilitate this. For the more complex evaluations, the criteria are incorporated into a rubric where levels of performance for each criterion are stated in language that can be understood by students.

anecdotal tests
quizzes culminating activities including:
Labs/performance tasks − labs/performance tasks
presentations − research reports
research − presentations
labs − portfolios

Assessment is embedded within the instructional process throughout each unit rather than being an isolated event at the end. Often, the learning and assessment tasks are the same, with formative assessment provided throughout the unit. In every case, the desired demonstration of learning is articulated clearly and the learning activity is planned to make that demonstration possible. This process of beginning with the end in mind helps to keep focus on the expectations of the course as stated in the course guideline. The evaluations are expressed as a percentage based upon the levels of achievement.

The evaluation of this course is based on the four Ministry of Education achievement categories of knowledge and understanding (25%), thinking (25%), communication (25%), and application (25%). . The evaluation for this course is based on the student’s achievement of curriculum expectations and the demonstrated skills required for effective learning.

The percentage grade represents the quality of the student’s overall achievement of the expectations for the course and reflects the corresponding level of achievement as described in the achievement chart for the discipline.

A credit is granted and recorded for this course if the student’s grade is 50% or higher. The final grade for this course will be determined as follows: 

  • 70% of the grade will be based upon evaluations conducted throughout the course. This portion of the grade will reflect the student’s most consistent level of achievement throughout the course, although special consideration will be given to more recent evidence of
  • 30% of the grade will be based on a final exam administered at the end of the The exam will contain a summary of information from the course and will consist of well-formulated multiple choice questions. These will be evaluated using a checklist. 

Textbook

Nelson Biology 12 University Preparation © 2012

  • Lab simulation software
  • Various internet websites

For the teachers who are planning a program in Science Education take into account several important areas. The areas of concern to all teachers that are outlined in the policy document of Ontario Ministry of Education, include the following:

  • teaching approaches
  • types of secondary school courses
  • education for exceptional students
  • the role of technology in the curriculum
  • English as a second language (ESL) and English literacy development (ELD)
  • career education
  • cooperative education and other workplace experiences
  • health and safety in mathematics

It is important to ensure that all students, especially those with special education needs, are provided with the learning opportunities and supports they require to gain the knowledge, skills, and confidence needed to succeed in a rapidly changing society. The context of special education and the provision of special education programs and services for exceptional students in Ontario are constantly evolving. Provisions included in the Canadian Charter of Rights and Freedoms and the Ontario Human Rights Code have driven some of these changes. Others have resulted from the evolution and sharing of best practices related to the teaching and assessment of students with special educational needs. Accommodations (instructional, environmental or assessment) allow the student with special education needs access to the curriculum without changes to the course curriculum expectations.

Environmental education teaches students about how the planet’s physical and biological systems work, and how we can create a more sustainable future. Good curriculum design following the resource document. This ensures that the student will have opportunities to acquire the knowledge, skills, perspectives and practices needed to become an environmentally literate citizen. The online course should provide opportunities for each student to address environmental issues in their home, in their local community, or even at the global level.

USCA helps students to become environmentally responsible. The first goal is to promote learning about environmental issues and solutions. The second goal is to engage students in practicing and promoting environmental stewardship in their community. The third goal stresses the importance of the education system providing leadership by implementing and promoting responsible environmental practices so that all stakeholders become dedicated to living more sustainably. Environmental education teaches students about how the planet’s physical and biological systems work, and how we can create a more sustainable future.

USCA provides a number of strategies to address the needs of ESL/ELD students to accommodate the needs of students who require instruction in English as a second language or English literacy development. Our teacher considers it to be his or her responsibility to help students develop their ability to use the English language properly. Appropriate accommodations affecting the teaching, learning, and evaluation strategies in this course may be made in order schools in canada for international students to help students gain proficiency in English, since students taking English as a second language at the secondary level have limited time in which to develop this proficiency. School determines the student’s level of proficiency in the English Language upon registration. This information is communicated to the teacher of the course following the registration and the teacher then invokes a number of strategies and resources to support the student in the course.

Throughout their secondary school education, students will learn about the educational and career opportunities that are available to them; explore and evaluate a variety of those opportunities; relate what they learn in their courses to potential careers in a variety of fields; and learn to make appropriate educational and career choices. The skills, knowledge and creativity that students acquire through this course are essential for a wide range of careers. Being able to express oneself in a clear concise manner without ambiguity in a second language, would be an overall intention of this course, as it helps students prepare for success in their working lives.

By applying the skills they have developed, students will readily connect their classroom learning to real-life activities in the world in which they live. Cooperative education and other workplace experiences will broaden their knowledge of employment opportunities in a wide range of fields. In addition, students will increase their understanding of workplace practices and the nature of the employer-employee relationship. Teachers should maintain links with community-based businesses to ensure that students have access to hands-on experiences that will reinforce the knowledge they have gained in school.

Every student is entitled to learn in a safe, caring environment, free from violence and harassment. Students learn and achieve better in such environments. The safe and supportive social environment at USCA is founded on healthy relationships between all people. Healthy relationships are based on respect, caring, empathy, trust, and dignity, and thrive in an environment in which diversity is honoured and accepted. Healthy relationships do not tolerate abusive, controlling, violent, bullying/harassing, or other inappropriate behaviours. To experience themselves as valued and connected members of an inclusive social environment, students need to be involved in healthy relationships with their peers, teachers, and other members.

Critical thinking is the process of thinking about ideas or situations in order to understand them fully, identify their implications, make a judgement, and/or guide decision making. Critical thinking includes skills such as questioning, predicting, analysing, synthesizing, examining opinions, identifying values and issues, detecting bias, and distinguishing between alternatives. Students who are taught these skills become critical thinkers who can move beyond superficial conclusions to a deeper understanding of the issues they are examining. They are able to engage in an inquiry process in which they explore complex and multifaceted issues, and questions for which there may be no clear-cut answers.

The school library program in USCA can help build and transform students’ knowledge in order to support lifelong learning in our information- and knowledge-based society. The school library program of these schools supports student success across the curriculum by encouraging students to read widely, teaching them to examine and read many forms of text for understanding and enjoyment, and helping them improve their research skills and effectively use information gathered through research. USCA teachers assist students in accessing a variety of online resources and collections (e.g., professional articles, image galleries, videos, databases). Teachers at USCA will also guide students through the concept of ownership of work and the importance of copyright in all forms of media.

Information literacy is the ability to access, select, gather, critically evaluate, and create information. Communication literacy refers to the ability to communicate information and to use the information obtained to solve problems and make decisions. Information and communications technologies are utilized by all Virtual High School students when the situation is appropriate within their online course. As a result, students will develop transferable skills through their experience with word processing, internet research, presentation software, and telecommunication tools, as would be expected in any other course or any business environment. Although the Internet is a powerful learning tool, there are potential risks attached to its use. All students must be made aware of issues related to Internet privacy, safety, and responsible use, as well as of the potential for abuse of this technology, particularly when it is used to promote hatred.

USCA provides varied opportunities for students to learn about ethical issues and to explore the role of ethics in both public and personal decision making. During the inquiry process, students may need to make ethical judgements when evaluating evidence and positions on various issues, and when drawing their own conclusions about issues, developments, and events. Teachers may need to help students in determining appropriate factors to consider when making such judgements. In addition, it is crucial that USCA teachers provide support and supervision to students throughout the inquiry process, ensuring that students engaged in an inquiry are aware of potential ethical concerns and address them in acceptable ways. Teachers will ensure that they thoroughly address the issue of plagiarism with students. In a digital world in which there is easy access to abundant information, it is very easy to copy the words of others and present them as one’s own. Students need to be reminded, even at the secondary level, of the ethical issues surrounding plagiarism, and the consequences of plagiarism should be clearly discussed before students engage in an inquiry. It is important to discuss not only dishonest plagiarism but also more negligent plagiarism instances.